Automatic Tracking, Super-Resolution and Recognition of Human Faces from Surveillance Video

نویسندگان

  • Frank Lin
  • Simon Denman
  • Vinod Chandran
  • Sridha Sridharan
چکیده

Identifying an individual from surveillance video is a difficult, time consuming and labour intensive process. The proposed system aims to streamline this process by filtering out unwanted scenes and enhancing an individual’s face through super-resolution. An automatic face recognition system is then used to identify the subject or present the human operator with likely matches from a database. A person tracker is used to speed up the subject detection and super-resolution process by tracking moving subjects and cropping a region of interest around the subject’s face to reduce the number and size of the image frames to be super-resolved respectively. In this paper, experiments have been conducted to demonstrate how the optical flow super-resolution method used improves surveillance imagery for visual inspection as well as automatic face recognition on an Eigenface and Elastic Bunch Graph Matching system. The optical flow based method has also been benchmarked against the “hallucination” algorithm, interpolation methods and the original low-resolution images. Results show that both super-resolution algorithms improved recognition rates significantly. Although the hallucination method resulted in slightly higher recognition rates, the optical flow method produced less artifacts and more visually correct images suitable for human consumption.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation into Optical Flow Super-Resolution for Surveillance Applications

Video surveillance systems are becoming an indispensable tool in today’s environment, particularly for security related applications. Surveillance footage is often routinely used to identify faces of criminals “caught in the act” or for tracking individuals in a crowded environment. Most face images captured with these systems however, are small and coarse, making it extremely difficult to iden...

متن کامل

Super Resolution and Face Recognition Based People Activity Monitoring Enhancement Using Surveillance Camera

Resümee Super Resolution and Face Recognition Based People Activity Monitoring Enhancement Using Surveillance Camera Due to importance of security in the society, monitoring activities and recognizing specific people through surveillance video camera is playing an important role. One of the main issues in such activity rises from the fact that cameras do not meet the resolution requirement for ...

متن کامل

Face Super Resolution: A Survey

Accurate recognition and tracking of human faces are indispensable in applications like Face Recognition, Forensics, etc. The need for enhancing the low resolution faces for such applications has gathered more attention in the past few years. To recognize the faces from the surveillance video footage, the images need to be in a significantly recognizable size. Image Super-Resolution (SR) algori...

متن کامل

Super-Resolved Faces for Improved Face Recognition from Surveillance Video

Characteristics of surveillance video generally include low resolution and poor quality due to environmental, storage and processing limitations. It is extremely difficult for computers and human operators to identify individuals from these videos. To overcome this problem, super-resolution can be used in conjunction with an automated face recognition system to enhance the spatial resolution of...

متن کامل

Human Recognition of Familiar and Unfamiliar People in Naturalistic Video

Understanding the human performance factors that mediate successful person identification can be helpful in the development of automatic face recognition algorithms. Face familiarity and facial motion are two factors that seem especially useful when subjects make recognition decisions from challenging viewing formats. We tested the effects of these two factors on person recognition from natural...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007